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1. Introduction

One of the most interesting progress in the theory of supermembranes is the quantization

by using the pure spinor technique [1]. It provides a quantum model (interacting) where

the kappa symmetry is gauge fixed and a BRST is provided. Using the BRST operators

one can compute the cohomology and the spectrum. Unfortunately, the interacting world-

volume action does not allow a simple analysis of the complete spectrum and only the

massless sector can be studied by using the target space symmetries. Nevertheless, the

main advantage is a complete superspace description of the theory in terms of vielbeins,

gravitinos and the superfield generalization of the 3-form of 11-dimensional supergrav-

ity [2, 3]. Recently in [4], we have shown that there is a deep relation between the pure

spinor BRST symmetry [5, 6] and the Free Differential Algebra of 11 supergravity and we

have used these facts to obtain a complete algebraic derivation of the BRST symmetry and

of the symmetries of the model. The resulting action has a manifest supersymmetry and it

depends on the supergravity background superfields. Those superfields are obtained from

the FDA by gauge completing the superfield starting from a given bosonic background

which satisfies the equations of motion. (We have to remind the reader that the FDA’s for

11-dimensional supergravity discussed in section 2 imply the equations of motion).

However, to solve the FDA for a given background is not a trivial task and the complete

superfield is needed in order to compute amplitudes in presence of a given background. In

practice one needs a superfield only up to a certain power in the fermionic coordinates.

The reason is that the coefficients of higher powers are simply ordinary derivatives of the

lowest components and they do no carry new information. Nevertheless, those coefficients

enter the computation of amplitudes and we need a method to reconstruct a complete

superfield in terms of the bosonic solution. There are on the market several techniques, see

for example [7 – 10] just to quote some of them adapted to our problem. These techniques

start from a very general setting and they provide an iterative reconstruction method,

which unfortunately hides completely the geometry behind the solution. We take a different

perspective: we start from a solution with some supersymmetries (in our case, from the 4-

dimensional point of view we take the supersymmetric models with N = 8, 3, 1) and some

relevant isometries and we try to build a complete superfield solution respecting these

symmetries. The rheonomic parametrizations of FDA.s are integrable by construction and

the consistency conditions are just the equations of motion [3]. Therefore we need to

start from an on-shell background solution and we are guaranteed that the solution exists.

The best way to find complete solutions of the FDA is terms of a super-Lie algebra and

of its Maurer-Cartan forms. As will be discussed in next sections, one starts from the
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Killing spinor of the bosonic solution and he reconstructs the gravitino fields by “pairing”

the Killing spinors of the bosonic submanifold with fermionic Maurer-Cartan forms of

the underlying algebra. Then, by inserting the gravitino field in the FDA and using the

relations between the Maurer-Cartan forms dictated by the Lie superalgebra, one finds that

the gravitinos satisfy their own equations. In the same way one can modfify the bosonic

supervielbein by adding the bosonic Maurer-Cartan forms and, by inserting it into the FDA

equations, one finds all correct pieces. This technique permits a direct complete solution

of the gauge completion only for supergroups or supercosets. It does not work that simply

in the case of less supersymmetry of the background, and some modifications are needed.

First, one needs to study the obstruction that prevents one from getting a complete

solution as a supergroup or a supercoset. This is parameterized by the Weyl tensor which

is obtained by commuting two covariant derivatives. Second, one finds that some of the

structures of the supercoset technique can still be used. For example, one can organize

the fermionic coordinates in two sectors: 1) those related to the linear realization of super-

symmetry (the unbroken supersymmetries) and 2) the remaining set related to the broken

supersymmetries, and the most convenient method seems to follow very closely the super-

coset solution. We assume that the fermionic coordinates are organized according to a

pure fermionic supercoset and we construct the gravitinos by pairing the Killing spinors

and some other spinor (needed to span a complete basis of sections of the spinor bundle

over the bosonic submanifold) with the Maurer-Cartan forms. The violation of the FDA

can be compensated by adding to the gravitions and to other superfield additional pieces.

These pieces can be taken automatically into account, by promoting the Maurer-Cartan

forms to gauged Maurer-Cartan forms. This yields an additional term in the vielbein equa-

tion which can be reabsorbed into a redefintion of the spin connection. In this way the

procedure can be iterated (even if it will not be pursued here further) and one lands with

a complete superfield construction.

Fortunately, there is an interesting alternative to the iterative solution. This procedure

has been developed in [11, 12] and used in several applications (see for example [13]) and it

is based on the supersolvable realization of the supercoset Osp(8|4)/SO(1, 3) × Sp(4, R) in

the case of D=11 supergravity and of SU(2, 2|4)/SO(1, 4)×SO(5) for the superstring. Using

the κ-symmetry one can gauge some coordinates of the superspace to zero and write the

Maurer-Cartan equations only in terms of the reduced superspace. This has the advantage

to fix the gauge symmetry and to simplify the Maurer-Cartan forms drastically. Specifically

it turns out that after this gauge fixing, they are just quadratic in the θ-coordinates. In

this way, the problem of resumming the complete dependence of the fermionic coordinates

is avoided and the gauged Maurer-Cartan equations already suffice to solve the problem

of the gauge completion. Indeed, only a remaining additional piece of contorsion must be

added in order to compensate the non-vanishing of the Weyl tensor.

This for what concerns the models with κ-symmetry where the gauge completion can

be provided.1 However, we notice that the same simplification can be achieved by imposing

1There might be some difficulties to reach the κ-symmetry gauge using the supersolvable realizations

as observed in [52, 53]. However, we can observe that the usage of pure spinor technology instead of κ-
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a constraint on the fermionic coordinates. In the case of Osp(8|4)/SO(1, 3) × Sp(4, R) is

Θx
AǫxyΘ

y
B = 0 . (1.1)

Here the indices A,B run over 1, . . . , 8 and the indices x, y over 1, . . . , 4. The equation is

symmetric in the SO(8) indices, it is homogeneous of degree two in the scaling of Θ’s, is

quadratic and it is Sp(4, R) covariant which means that it does not spoil the isometries

of the AdS4 manifold. It will be shown in the text that these constraints yield the same

simplification of the supersolvable realization of the supercoset, and in particular the κ-

symmetry gauge adopted in [11, 12] is a solution of these new constraints. However, in

the case of Green-Schwarz type of models these constraints are not consistent with the

canonical quantization of the model. This is due to fact that in the canonical quantization

the Θ’s satisfy a Clifford algebra and the above constraints are not consistent. On the

other side, using the pure spinor formalism the commutation relations among Θ’s vanish

(they have a non-vanishing commutation relations with the conjugate momenta, see for

example [4]) and the constraints are consistent. In addition, they have the same dignity of

the pure spinor constraints and they can be treated on the same footing. (We also mention

that quadratic constraints for the supercoordinates appeared also in [14 – 16] and in [17].

In [18], which is based on pure spinor formulation of BRST symmetry [19, 20], quadratic

constraints for anticommuting ghosts have been discussed.)

In this way, we can use the advantages of the supersolvable description of the back-

ground in order to derive pure spinor sigma models for supermembrane and superstrings.

This can be useful for maximal supersymmetric background and for less than maximal

supersymmetric spaces.

The paper is organized as follows. In section 2 and section 3, we give some details

about compactifications of the bosonic background of the form AdS4×G/H, free differential

algebras and some notations. In section 4, we recall the geometry of the spinor bundle and

the holonomy tensor. In section 5 we discuss some property of the supergroup Osp(N|4)
and its Maurer-Cartan forms. Finally, we discuss the gauging and we discuss the solution

to the first order. Then, we consider two examples in section 9. Some additional material

is contained in the appendices.

2. The super FDA of D=11 supergravity

Let us begin by writing the complete set of curvatures defining the complete FDA of

D = 11 supergravity. As usual this FDA is the semidirect sum of a minimal algebra with

a contractible algebra:

A = M
⊎

C (2.1)

the curvatures being the contractible generators C. By setting them to zero we retrieve,

according to Sullivan’s first theorem, the minimal algebra M. This latter, according to

symmetry might overcome these problems and supersolvable realizations can be used not only for string

theory on anti-de Sitter background, but also for membrane. Our motivations are indeed focused on pure

spinor models instead of κ-invariant solutions. The formulation using constrained supermanifold represents

an alternative to gauge fixing κ-symmetry.
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Sullivan’s second theorem, is explained in terms of cohomology of the super Lie subalgebra

G ⊂ M, spanned by the 1-forms. In this case G is just the D = 11 superPoincaré algebra

spanned by the following 1-forms:

1. the vielbein V a

2. the spin connection ωab

3. the gravitino Ψ

where the underlined indices a, b, . . . run on eleven values and are vector indices of SO(1, 10).

The gravitino Ψ is a fermionic one-form (hence commuting) assigned to the 32-component

Majorana spinor representation of SO(1, 10):

CΨ
T

= Ψ ; Ψ ≡ Ψ† Γ0 (2.2)

The higher degree generators of the minimal FDA M are:

1. the bosonic 3-form A[3]

2. the bosonic 6-form A[6].

The complete set of curvatures is given below ([21, 22]):

T a = DV a − i
1

2
Ψ ∧ Γa Ψ

Rab = dωab − ωac ∧ ωcb

ρ = DΨ ≡ dΨ − 1

4
ωab ∧ Γab Ψ

F[4] = dA[3] − 1

2
Ψ ∧ Γab Ψ ∧ V a ∧ V b

F[7] = dA[6] − 15F[4] ∧ A[3] − 15

2
V a ∧ V b ∧ Ψ̄ ∧ Γab Ψ ∧ A[3]

−i
1

2
Ψ ∧ Γa1...a5

Ψ ∧ V a1 ∧ . . . ∧ V a5 (2.3)

From their very definition, by taking a further exterior derivative one obtains the Bianchi

identities:

DRab = 0

DT a + Ra
b ∧ V b + Ψ̄ ∧ Γaρ = 0

Dρ +
1

4
Rab ∧ ΓabΨ = 0 ,

dF[4] − Ψ̄Γab ∧ ρ ∧ V a ∧ V b − Ψ̄ ∧ ΓabΨ ∧ V a ∧ T b = 0 (2.4)

The dynamical theory is defined, according to the general constructive scheme of super-

symmetric theories, by the principle of rheonomy (see [23] ) implemented into Bianchi

– 5 –
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identities. Indeed there is a unique rheonomic parametrization of the curvatures which

solves the Bianchi identities and it is the following one:

T a = 0 (2.5)

F[4] = Fa1...a4
V a1 ∧ . . . ∧ V a4 (2.6)

F[7] =
1

84
F a1...a4 V b1 ∧ . . . ∧ V b7 ǫa1...a4b1...b7 (2.7)

ρ = ρa1a2
V a1 ∧ V a2 + i

1

3

(
Γa1a2a3Ψ ∧ V a4 − 1

8
Γa1...a4m Ψ ∧ V m

)
F a1...a4 (2.8)

Rab = R
ab

cd V c ∧ V d + i ρmn

(
1

2
Γabmnc − 2

9
Γmn[a δb]c + 2Γab[m δn]c

)
Ψ ∧ V c

+Ψ ∧ Γmn Ψ Fmnab +
1

24
Ψ ∧ Γabc1...c4 Ψ F c1...c4 (2.9)

The expressions (2.5)–(2.9) satisfy the Bianchi equations provided the space-time compo-

nents of the curvatures satisfy the following constraints

0 = DmFmc1c2c3 +
1

96
ǫc1c2c3a1a8 Fa1...a4

Fa5...a8

0 = Γabc ρbc

R
am

cm = 6F ac1c2c3 F bc1c2c3 − 1

2
δ
a
b F c1...c4 F c1...c4 (2.10)

which are the space-time field equations.

2.1 Other relevant implications of the Bianchi identities

For later use it is convenient to rewrite eqs. (2.9) in a slightly more compact form, namely:

T a ≡ 0 ,

Rab ≡ Rab
mn V m ∧ V n + Θ̄c | ab Ψ ∧ Vc + Ψ ∧ Sab Ψ ,

ρ ≡ ρab V a ∧ V b + Fa Ψ ∧ V a ,

F[4] ≡ Fb
1
...b

4
V b

1 ∧ . . . ∧ V b
4 . (2.11)

where we have defined the following spinor and the following matrices:

Θ̄c | ab = i ρmn

(
1

2
Γabmnc − 2

9
Γmn[a δb]c + 2Γab[m δn]c

)

= −i ρab Γc + 2 i ρc[a Γb] (2.12)

Fa = Ta
b1b2b3b4Fb1b2b3b4 , (2.13)

Sab = F abcdΓcd +
1

24
Fc1...c4Γ

abc1...c4 , (2.14)

and where where we have used the following abbreviation as in [24]:

Ta
b1b2b3b4 = − i

24

(
Γb1b2b3b4

a + 8 δa
[b1Γb2b3b4]

)
. (2.15)
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In eq. (2.12) the equality of the first with the second line follows from the gravitino field

equation, namely the second of eqs. (2.10). This latter implies that the spinor tensor ρab

is an irreducible representation
(

3
2 , 3

2 , 1
2 , 1

2 , 1
2

)
of SO(1, 10), i.e:

Γm ρam = 0 (2.16)

As we demonstrate later on the most important relations to be extracted from Bianchi

identities, besides the rheonomic parametrization, concerns the spinor derivatives of the

curvature superfield. This latter is determined from the expansion of the inner components

of the 4-form field strength Fa1...a4
. From the last of eqs. (2.4) we obtain:

DαFabcd = (Γ[abρcd])α , (2.17)

where the spinor derivative is normalized according to the definition:

D Fabcd ≡ Ψ
α DαFabcd + V m Dm Fabcd (2.18)

This shows that the gravitino field strength appears at first order in the θ-expansion of the

curvature superfield. Next we consider the spinor derivative of the gravitino field strength

itself. Using the normalization which streams from the following definition:

D ρab = Dc ρab V c + Kab Ψ (2.19)

we obtain:

Kab = −1

4
Rmn

ab Γmn + D[a Fb] +
1

2

[
Fa , Fb

]
(2.20)

The tensor-matrix Kab is of key importance in the discussion of compactifications. If it

vanishes on a given background it means that the gravitino field strength can be consistently

put to zero to all orders in θ.s and on its turn this implies that the 4-field strength can be

chosen constant to all orders in θ.s This is the case of maximal unbroken supersymmetry. In

this case all curvature components of the Free Differential Algebra can be chosen constant

and we have a superspace whose geometry is purely described by Maurer Cartan forms of

some super coset.

On the other hand if Kab does not vanish this implies that both ρab and Fabcd have

some non trivial θ-dependence and cannot be chosen constant. In this case the geometry of

superspace is not described by simple Maurer Cartan forms of some supercoset, since the

curvatures of the FDA are not pure constants. This is the case of fully or partially broken

SUSY and it is the case we want to explore. In the the AdS4× (G/H)7 compactifications it

will turn out that the matrix Kab is related to the holonomy tensor of the internal manifold

(G/H)7.

Let us finally work out the spinor derivative of the Riemann tensor. Defining:

DRab
mn = Dp Rab

mn V p + Ψ Λab
mn (2.21)

from the first of eqs. (2.4) we obtain:

Λab
mn =

(
D[m − F [m

)
Θ

| ab
n] + 2Sab ρmn (2.22)

– 7 –
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where we have introduced the notation:

Θn | ab = C
(
Θ̄n | ab

)T
= iΓc ρab − 2 i Γ[a ρb]c

F a = C (Fa)
T C−1 =

i

24

(
Γb1b2b3b4

a − 8 δa
[b1Γb2b3b4]

)
Fb1b2b3b4 (2.23)

The matrix Kab and the spinor Λab
mn are the crucial objects we are supposed to compute

in each compactification background.

3. Compactifications of M -theory on AdS4 × M7 backgrounds

We are interested in compactified backgrounds where the 11-dimensional bosonic manifold

is of the form:

M11 = M4 × M7 (3.1)

M4 denoting a four-dimensional maximally symmetric manifold whose coordinates we

denote xµ and M7 a 7-dimensional compact manifold whose parameters we denote yI .

Furthermore we assume that in any configuration of the compactified theory the eleven

dimensional vielbein is split as follows:

V a =

{
V r = Er(x) ; r = 0, 1, 2, 3

V α = Φα
β(x)

(
eβ + W β(x)

)
; α, β = 4, 5, 6, 7, 8, 9, 10

(3.2)

where Er(x) is a purely x-dependent 4-dimensional vielbein, W α(x) is an x-dependent

1-form on x-space describing the Kaluza Klein vectors and the purely x–ependent 7 × 7

matrix Φα
β(x) encodes part of the scalar fields of the compactified theory, namely the

internal metric moduli. From these assumptions it follows that the bosonic field strength

is expanded as follows:

F
[4]
(Bosonic) ≡ F [4](x) + F [3]

α (x) ∧ V α + F
[2]
αβ(x) ∧ V α ∧ V β (3.3)

+ F
[1]
αβγ(x) ∧ V α ∧ V β ∧ V γ + F

[0]
αβγδ(x) ∧ V α ∧ V β ∧ V γ ∧ V δ

where F
[p]
α1...α4−p(x) are x-space p-forms depending only on x.

In bosonic backgrounds with a space-time geometry of the form (3.1), the family of

configurations (3.2) must satisfy the condition that by choosing:

Er = vielbein of a maximally symmetric 4-dimensional space time (3.4)

ΦI
J(x) = δI

J (3.5)

W I = 0 (3.6)

F
[3]
I (x) = F

[2]
IJ (x) = F

[1]
IJK(x) = 0 (3.7)

F [4](x) = e ǫrstu Er ∧ Es ∧ Et ∧ Eu ; (e = constant parameter) (3.8)

F
[0]
αβγδ(x) = gαβγδ = constant tensor (3.9)

we obtain an exact bona fide solution of the eleven-dimensional field equations of D=11

supergravity.

– 8 –
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There are three possible 4-dimensional maximally symmetric Lorentzian manifolds

M4 =





M4 Minkowsky space

dS4 de Sitter space

AdS4 anti de Sitter space

(3.10)

In any case Lorentz invariance imposes eqs. (3.5), (3.6), (3.7) while translation invariance

imposes that the vacuum expectation value of the scalar fields Φα
β(x) should be a constant

matrix

< Φα
β(x) >= Aα

β (3.11)

We are interested in 7-manifolds that preserve some residual supersymmetry in D = 4.

This relates to the holonomy of M7 which has to be restricted in order to allow for the

existence of Killing spinors. In the next subsection we summarize those basic results from

Kaluza Klein literature that are needed in our successive elaborations.

3.1 D=11 supergravity field equations and 7-manifolds of weak G2 holonomy,

i.e. Englert 7-manifolds

In order to admit at least one Killing spinor or more, the 7-manifold M7 necessarily must

have a (weak) holonomy smaller than SO(7): at most G2. The qualification weak refers

to the definition of holonomy appropriate to compactifications on AdS4 × M7 while the

standard definition of holonomy is appropriate to compactifications on Ricci flat back-

grounds Mink4 × M7. To explain these concepts that were discovered in the eighties in

contemporary language we have to recall the notion of G-structures. Indeed in the re-

cent literature about flux compactifications the key geometrical notion exploited by most

authors is precisely that of G-structures [25].

Following, for instance, the presentation of [25], if Mn is a differentiable manifold of

dimension n, TMn
π→ Mn its tangent bundle and FMn

π→ Mn its frame bundle, we

say that Mn admits a G-structure when the structural group of FMn is reduced from

the generic GL(n, R) to a proper subgroup G ⊂ GL(n, R). Generically, tensors on Mn

transform in representations of the structural group GL(n, R). If a G-structure reduces

this latter to G ⊂ GL(n, R), then the decomposition of an irreducible representation of

GL(n, R), pertaining to a certain tensor tp, with respect to the subgroup G may contain

singlets. This means that on such a manifold Mn there may exist a certain tensor tp which is

G-invariant, and therefore globally defined. As recalled in [25] existence of a Riemannian

metric g on Mn is equivalent to a reduction of the structural group GL(n, R) to O(n),

namely to an O(n)-structure. Indeed, one can reduce the frame bundle by introducing

orthonormal frames, the vielbein eI , and, written in these frames, the metric is the O(n)

invariant tensor δIJ . Similarly orientability corresponds to an SO(n)-structure and the

existence of spinors on spin manifolds corresponds to a Spin(n)-structure.

In the case of seven dimensions, an orientable Riemannian manifold M7, whose frame

bundle has generically an SO(7) structural group admits a G2-structure if and only if, in

the basis provided by the orthonormal frames Bα, there exists an antisymmetric 3-tensor

– 9 –
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φαβγ satisfying the algebra of the octonionic structure constants:

φαβκ φγδκ =
1

18
δγδ
αβ − 2

3
φ⋆

αβγδ

−1

6
ǫκρσαβγδ φ⋆

αβγδ = φκρσ (3.12)

which is invariant, namely it is the same in all local trivializations of the SO(7) frame

bundle. This corresponds to the algebraic definition of G2 as that subgroup of SO(7) which

acts as an automorphism group of the octonion algebra. Alternatively G2 can be defined

as the stability subgroup of the 8-dimensional spinor representation of SO(7). Hence we

can equivalently state that a manifold M7 has a G2-structure if there exists at least an

invariant spinor η, which is the same in all local trivializations of the Spin(7) spinor bundle.

In terms of this invariant spinor the invariant 3-tensor φρσκ has the form:

φρσκ =
1

6
ηT τρσκ η (3.13)

and eq. (3.13) provides the relation between the two definitions of the G2-structure.

On the other hand the manifold has not only a G2-structure, but also G2-holonomy if

the invariant three-tensor φαβκ is covariantly constant. Namely we must have:

0 = ∇φαβγ ≡ dφαβγ + 3Bκ[α φβγ]κ (3.14)

where the 1-form Bαβ is the spin connection of M7. Alternatively the manifold has G2-

holonomy if the invariant spinor η is covariantly constant, namely if:

∃ η ∈ Γ(SpinM7,M7) \ 0 = ∇ η ≡ dη − 1

4
Bαβ ταβ η (3.15)

where τα (α = 1, . . . , 7) are the 8 × 8 gamma matrices of the SO(7) Clifford algebra. The

relation between the two definitions (3.14) and (3.15) of G2-holonomy is the same as for

the two definitions of the G2-structure, namely it is given by eq. (3.13). As a consequence

of its own definition a Riemannian 7-manifold with G2 holonomy is Ricci flat. Indeed the

integrability condition of eq. (3.15) yields:

Rαβ
γδ ταβ η = 0 (3.16)

where Rαβ
γδ is the Riemann tensor of M7. From eq. (3.16), by means of a few simple

algebraic manipulations one obtains two results:

• The curvature 2-form

Rαβ ≡ Rαβ
γδ Bγ ∧ Bδ (3.17)

is G2 Lie algebra valued, namely it satisfies the condition:

φκαβ Rαβ = 0 (3.18)

which projects out the 7 of G2 from the 21 of SO(7) and leaves with the adjoint 14.
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• The internal Ricci tensor is zero:

Rακ
βκ = 0 (3.19)

Next we consider the bosonic field equations of M -theory, namely the first and the last of

eqs. ( 2.10 ). We make the compactification ansatz (3.1) where M4 is one of the three

possibilities mentioned in eq. (3.10) and all of eqs. (3.5)–(3.9) hold true. Then we split the

rigid index range as follows:

a, b, c, . . . =

{
α, β, γ, . . . = 4, 5, 6, 7, 8, 9, 10 = M7 indices

r, s, t, . . . = 0, 1, 2, 3 = M4 indices
(3.20)

and by following the conventions employed in [26] and using the results obtained in the

same paper, we conclude that the compactification ansatz reduces the system of the first

and last of (2.10) to the following one:

Rrs
tu = λ δrs

tu (3.21)

Rακ
βκ = 3 ν δα

β (3.22)

Frstu = e ǫrstu (3.23)

gαβγδ = f Fαβγδ (3.24)

Fακρσ Fβκρσ = µ δα
β (3.25)

Dµ Fµκρσ =
1

2
e ǫκρσαβγδ Fαβγδ (3.26)

eq. (3.22) states that the internal manifold M7 must be an Einstein space. eqs. (3.23)

and (3.24) state that there is a flux of the four-form both on 4-dimensional space-time M4

and on the internal manifold M7. The parameter e, which fixes the size of the flux on

the four-dimensional space and was already introduced in eq. (3.8), is called the Freund-

Rubin parameter [27]. As we are going to show, in the case that a non vanishing Fαβγδ is

required to exist, eqs. (3.25) and (3.26), are equivalent to the assertion that the manifold

M7 has weak G2 holonomy rather than G2-holonomy, to state it in modern parlance [28].

In paper [29], manifolds admitting such a structure were instead named Englert spaces and

the underlying notion of weak G2 holonomy was already introduced there with the different

name of de Sitter SO(7)+ holonomy.

Indeed eq. (3.26) which, in the language of the early eighties was named Englert

equation [30] and which is nothing else but the first of equations (2.10), upon substitution

of the Freund Rubin ansatz (3.23) for the external flux, can be recast in the following more

revealing form: Let

Φ⋆ ≡ Fαβγδ Bα ∧ Bβ ∧ Bγ ∧ Bδ (3.27)

be a the constant 4-form on M7 defined by our non vanishing flux, and let

Φ ≡ 1

24
ǫαβγκρστ Fκρστ Bα ∧ Bβ ∧ Bγ (3.28)

be its dual. Englert eq. (3.26) is just the same as writing:

dΦ = 12 eΦ⋆

dΦ⋆ = 0 (3.29)
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When the Freund Rubin parameter vanishes e = 0 we recognize in eq. (3.29) the statement

that our internal manifold M7 has G2-holonomy and hence it is Ricci flat. Indeed Φ is

the G2 invariant and covariantly constant form defining G2-structure and G2-holonomy.

On the other hand the case e 6= 0 corresponds to the weak G2 holonomy. Just as we

reduced the existence of a closed three-form Φ to the existence of a G2 covariantly constant

spinor satisfying eq. (3.15) which allows to set the identification (3.13), in the same way

eqs. (3.29) can be solved if and only if on M7 there exist a weak Killing spinor η satisfying

the following defining condition:

Dα η = m eτα η (3.30)

m

Dη ≡
(

d − 1

4
Bαβταβ

)
η = m eBαταη (3.31)

where m is a numerical constant and e is the Freund-Rubin parameter, namely the only

scale which at the end of the day will occur in the solution. The integrability of the above

equation implies that the Ricci tensor be proportional to the identity, namely that the

manifold is an Einstein manifold and furthermore fixes the proportionality constant:

Rακ
βκ = 12m2 e2 δα

β −→ ν = 12m2 e2 (3.32)

In case such a spinor exists, by setting:

gαβγδ = Fαβγδ = ηT ταβγδη = 24φ⋆
αβγδ (3.33)

we find that Englert equation (3.26) is satisfied, provided we have:

m = −3

2
(3.34)

In this way Maxwell equation, namely the first of (2.10) is solved. Let us also note, as the

authors of [29] did many years ago, that condition (3.30) can also be interpreted in the

following way. The spin-connection Bαβ plus the vielbein Bγ define on any non Ricci flat

7-manifold M7 a connection which is actually SO(8) rather than SO(7) Lie algebra valued.

In other words we have a principal SO(8) bundle which leads to an SO(8) spin bundle of

which η is a covariantly constant section:

0 = ∇SO(8)η =
(
∇SO(7) − m eBα τα

)
η (3.35)

The existence of η implies a reduction of the SO(8)-bundle. Indeed the stability subgroup of

an SO(8) spinor is a well known subgroup SO(7)+ different from the standard SO(7) which,

instead, stabilizes the vector representation. Hence the so named weak G2 holonomy of

the SO(7) spin connection Bαβ is the same thing as the SO(7)+ holonomy of the SO(8) Lie

algebra valued de Sitter connection
{
Bαβ,Bγ

}
introduced in [29] and normally discussed

in the old literature on Kaluza Klein Supergravity.

We have solved Maxwell equation, but we still have to solve Einstein equation, namely

the last of (2.10). To this effect we note that:

Fβκρσ Fακρσ = 24 δα
β =⇒ µ = 24 (3.36)
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and we observe that Einstein equation reduces to the following two conditions on the

parameters (see [26] for details):

3

2
λ = −

(
24 e2 +

7

2
µ f2

)

3 ν = 12 e2 +
5

2
µ f2 (3.37)

¿From eqs. (3.37) we conclude that there are only three possible kind of solutions.

a The flat solutions of type

M11 = Mink4 ⊗ M7︸︷︷︸
Ricci flat

(3.38)

where both D = 4 space-time and the internal 7-space are Ricci flat. These compact-

ifications correspond to e = 0 and Fαβγδ = 0 ⇒ gαβγδ = 0.

b The Freund Rubin solutions of type

M11 = AdS4 ⊗ M7︸︷︷︸
Einst. manif.

(3.39)

These correspond to anti de Sitter space in 4-dimensions, whose radius is fixed by

the Freund Rubin parameter e 6= 0 times any Einstein manifold in 7-dimensions with

no internal flux, namely gαβγδ = 0. In this case from eq. (3.37) we uniquely obtain:

Rrs
tu = −16 e2 δrs

tu (3.40)

Rακ
βκ = 12 e2 δα

β (3.41)

Frstu = e ǫrstu (3.42)

Fαβγδ = 0 (3.43)

c The Englert type solutions

M11 = AdS4 ⊗ M7︸︷︷︸
Einst. manif.

weak G2 hol

(3.44)

These correspond to anti de Sitter space in 4-dimensions (e 6= 0) times a 7-dimensional

Einstein manifold which is necessarily of weak G2 holonomy in order to support a

consistent non vanishing internal flux gαβγδ . In this case combining eqs. (3.37) with

the previous ones we uniquely obtain:

λ = −30 e2 ; f = ±1

2
e (3.45)

As we already mentioned in the introduction there exist several compact manifolds of

weak G2 holonomy. In particular all the coset manifolds G/H of weak G2 holonomy were
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classified and studied in the Kaluza Klein supergravity age [31, 26, 32 – 36, 29, 37, 38] and

they were extensively reconsidered in the context of the AdS/CFT correspondence [39 – 43].

In the present paper we study the supergauge completion of compactifications of the

Freund Rubin type, namely on eleven-manifolds of the form:

M11 = AdS4 × G
H (3.46)

with no internal flux gαβγδ switched on. As it was extensively explained in [44] and further

developed in [39 – 43], if the compact coset G/H admits N ≤ 8 Killing spinors ηA, namely

N ≤ 8 independent solutions of equation (3.30) with m = 1, then the isometry group G is

necessarily of the form:

G = SO(N ) × Gflavor (3.47)

where Gflavor is some appropriate Lie group. In this case the isometry supergroup of the

considered D=11 supergravity background is:

Osp(N | 4) × Gflavor (3.48)

and the spectrum of fluctuations of the background arranges into Osp(N | 4) supermulti-

plets furthermore assigned to suitable representations of the bosonic flavor group.

4. The SO(8) spinor bundle and the holonomy tensor

We come next to discuss a very important property of 7-manifolds with a spin structure

which plays a crucial role in understanding the supergauge completion. This is the exis-

tence of an SO(8) vector bundle whose non trivial connection is defined by the riemannian

structure of the manifold. To introduce this point and in order to illustrate its relevance

to our problem we begin by considering a basis of D = 11 gamma matrices well adapted

to the compactification on AdS4 ×M7.

4.1 The well adapted basis of gamma matrices

According to the tensor product representation well adapted to the compactification, the

D = 11 gamma matrices can be written as follows:

Γa = γa ⊗ 18×8 (a = 0, 1, 2, 3)

Γ3+α = γ5 ⊗ τα (α = 1, . . . , 7) (4.1)

where, following [4] and the old Kaluza Klein supergravity literature [29, 44, 33] the ma-

trices τα are the real antisymmetric realization of the SO(7) Clifford algebra with negative

metric:

{τα , τβ} = − 2 δαβ ; τα = − (τα)T (4.2)

In this basis the charge conjugation matrix is given by:

C = C ⊗ 18×8 (4.3)

where C is the charge conjugation matrix in d = 4:

C γa C−1 = −γT
a ; CT = −C (4.4)
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4.2 The so(8)-connection and the holonomy tensor

Next we observe that using these matrices the covariant derivative introduced in equa-

tion (3.35) defines a universal so(8)-connection on the spinor bundle which is given once

the riemannian structure, namely the vielbein and the spin connection are given
{
Bα, Bαβ

}
:

Uso(8) ≡ −1

4
Bαβ ταβ − eBα τα (4.5)

More precisely and following the index conventions presented in appendix A, let ζA be an

orthonormal basis:

ζA ζB = δAB (4.6)

of sections of the spinor bundle over the Einstein manifold M7. Any spinor can be written

as a linear combination of these sections that are real. Furthermore the bar operation in

this case is simply the transposition. Hence, if we consider the so(8) covariant derivative

of any of these sections, this is a spinor and, as such, it can be expressed as a linear

combinations of the same:

∇so(8) ζA ≡
(
d + Uso(8)

)
ζA = UAB ζB (4.7)

According to standard lore the 1-form valued, antisymmetric 8× 8 matrix UAB defined by

eq. (4.7) is the so(8)-connection in the chosen basis of sections. If the manifold M7 admits

N Killing spinors, then it follows that we can choose an orthonormal basis where the first

N sections are Killing spinors:

ζA = ηA ; ∇so(8) ηA = 0 , A = 1, . . . , N (4.8)

and the remaining 8−N elements of the basis, whose covariant derivative does not vanish

are orthogonal to the Killing spinors:

ζΛ = ξA ; ∇so(8) ξA 6= 0 , A = 1, . . . , 8 −N
ξB ηA = 0

ξB ξC = δBC (4.9)

It is then evident from eqs. (4.8) and (4.9) that the so(8)-connection UAB takes values

only in a subalgebra so(8 −N ) ⊂ so(8) and has the following block diagonal form:

UAB =

(
0 0

0 UAB

)
(4.10)

Squaring the SO(8)-covariant derivative, we find

∇2 ζA =
(
dUAB − UAC ∧ UCB

)
︸ ︷︷ ︸

FAB [U]

ζB

= −1

4

(
Rγδ

αβ − 4 e2 δγδ
αβ

)

︸ ︷︷ ︸
Cγδ

αβ

τγδ ζA (4.11)

where Cγδ
αβ is the so called holonomy tensor, essentially identical with the Weyl tensor of

the considered Einstein 7-manifold.
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4.3 The holonomy tensor and superspace

As a further preparation to our subsequent discussion of the gauge completion let us now

consider the form taken on the AdS4 × G/H backgrounds by the operator Kab introduced

in equation (2.19) and governing the mechanism of supersymmetry breaking. We will see

that it is just simply related to the holonomy tensor discussed in the previous section,

namely to the field strength of the SO(8)-connection on the spinor bundle. To begin with

we calculate the operator Fa introduced in eqs. (2.13), (2.15). Explicitly using the well

adapted basis (4.1) for gamma matrices we find:

Fa =

{
Fa = −2 e γa γ5 ⊗ 18

Fα = −e14 ⊗ τα
(4.12)

Using this input we obtain:

Kab =





Kab = 0

Kaβ = 0

Kαβ = −1
4

(
Rγδ

αβ − 4 e2 δγδ
αβ

)

︸ ︷︷ ︸
Cγδ

αβ

τγδ
(4.13)

Where the tensor Cγδ
αβ defined by the above equation is named the holonomy tensor and

it is an intrinsic geometric property of the compact internal manifold M7. As we see

the holonomy tensor vanishes only in the case of M7 = S7 when the Riemann tensor is

proportional to an antisymmetrized Kronecker delta, namely, when the internal Einstein 7-

manifold is maximally symmetric. The holonomy tensor is a 21×21 matrix which projects

the SO(7) Lie algebra to a subalgebra:

Hhol ⊂ SO(7) (4.14)

with respect to which the 8-component spinor representation should contain singlets in

order for unbroken supersymmetries to survive. Indeed the holonomy tensor appears in

the integrability condition for Killing spinors. Indeed squaring the defining equation of

Killing spinors with m = 1 we get the consistency condition:

Cγδ
αβ τγδ η = 0 (4.15)

which states that the Killing spinor directions are in the kernel of the operators Cγδ
αβ τγδ,

namely are singlets of the subalgebra Hhol generated by them.

In view of this we conclude that the gravitino field strength has the following structure:

ρab =





ρab = 0

ρaβ = 0

ραβ 6= 0 ;

{
zero at θ = 0

depends only on the broken θ.s

(4.16)

As a preparation for our next coming discussion it is now useful to remind the reader

that the list of homogeneous 7-manifolds G/H of Englert type which preserve at least two
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N Name Coset
Holon.

so(8) bundle
Fibration

8 S7 SO(8)
SO(7) 1

{
S7 π

=⇒ P3

∀ p ∈ P3 ; π−1(p) ∼ S1

2 M111 SU(3)×SU(2)×U(1)
SU(2)×U(1)×U(1) SU(3)

{
M111 π

=⇒ P2 × P1

∀ p ∈ P2 × P1 ; π−1(p) ∼ S1

2 Q111 SU(2)×SU(2)×SU(2)×U(1)

U(1)×U(1)×U(1) SU(3)

{
Q111 π

=⇒ P1 × P1 × P1

∀ p ∈ P1 × P1 × P1 ; π−1(p) ∼ S1

2 V 5,2 SO(5)
SO(2) SU(3)

{
V 5,2 π

=⇒ Ma ∼ quadric in P4

∀ p ∈ Ma ; π−1(p) ∼ S1

3 N010 SU(3)×SU(2)
SU(2)×U(1) SU(2)

{
N010 π

=⇒ P2

∀ p ∈ P2 ; π−1(p) ∼ S3

Table 1: The homogeneous 7-manifolds that admit at least 2 Killing spinors are all sasakian or tri-

sasakian. This is evident from the fibration structure of the 7-manifold, which is either a fibration

in circles S1 for the N = 2 cases or a fibration in S3 for the unique N = 3 case corresponding to

the N010 manifold

N Name Coset
Holon.

so(8) bundle

1 S7
squashed

SO(5)×SO(3)
SO(3)×SO(3) SO(7)+

1 Npqr SU(3)×U(1)

U(1)×U(1) SO(7)+

Table 2: The homogeneous 7-manifolds that admit just one Killing spinors are the squashed

7-sphere and the infinite family of Npqr manifolds for pqr 6= 010.

supersymmetries (N ≥ 2) is extremely short. It consists of the sasakian or tri-sasakian

homogeneous manifolds which are displayed in table 1. For these cases our strategy in order

to obtain the supergauge completion will be based on a superextension of the sasakian

fibration. The cases with N = 1 are somewhat more involved since such a weapon is not

in our stoke. These cases are also ultra-few and they are displayed in table 2.

5. The OSp(N|4) supergroup, its superalgebra and its supercosets

The key ingredients in the construction of the supergauge completion of AdS4 × G/H are

provided by supercoset manifolds of the supergroup OSp(N|4) [23, 45, 46, 35, 36]. For

this reason we dedicate this section to an in depth analysis of such a supergroup to the

structure of its superalgebra described by appropriate Maurer Cartan equations and to the
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explicit construction of coset representatives for relevant instances of supercosets of the

form OSp(N|4)/H. This lore will be crucial in our subsequent discussions.

5.1 The superalgebra

The real form osp(N|4) of the complex osp(N|4, C) Lie superalgebra which is relevant for

the study of AdS4 × G/H compactifications is that one where the ordinary Lie subalgebra

is the following:

sp(4, R) × so(N ) ⊂ osp(N|4) (5.1)

This is quite obvious because of the isomorphism sp(4, R) ≃ so(2, 3) which identifies

sp(4, R) with the isometry algebra of anti de Sitter space. The compact algebra so(8) is

instead the R-symmetry algebra acting on the supersymmetry charges.

The superalgebra osp(N|4) can be introduced as follows: consider the two graded

(4 + N ) × (4 + N ) matrices:

Ĉ =

(
C γ5 0

0 − i
4 e 1N×N

)
; Ĥ =

(
i γ0 γ5 0

0 − 1
4 e 1N×N

)
(5.2)

where C is the charge conjugation matrix in D = 4. The matrix Ĉ has the property that

its upper block is antisymmetric while its lower one is symmetric. On the other hand,

the matrix H has the property that both its upper and lower blocks are hermitian. The

osp(N|4) Lie algebra is then defined as the set of graded matrices Λ satisfying the two

conditions:

ΛT Ĉ + Ĉ Λ = 0 (5.3)

Λ† Ĥ + Ĥ Λ = 0 (5.4)

eq. (5.3) defines the complex osp(N|4) superalgebra while eq. (5.4) restricts it to the ap-

propriate real section where the ordinary Lie subalgebra is (5.1). The specific form of

the matrices Ĉ and Ĥ is chosen in such a way that the complete solution of the con-

straints (5.3), (5.4) takes the following form:

Λ =

(
−1

4 ωab γab − 2 e γa γ5 Ea ψA

4 i eψB γ5 − eAAB

)
(5.5)

and the Maurer-Cartan equations

dΛ + Λ ∧ Λ = 0 (5.6)

read as follows:

dωab − ωac ∧ ωdb ηcd + 16e2Ea ∧ Eb = −i 2eψA ∧ γabγ5ψA,

dEa − ωa
c ∧ Ec = i

1

2
ψA ∧ γaψA,

dψA − 1

4
ωab ∧ γabψA − eAAB ∧ ψB = 2eEa ∧ γaγ5ψA,

dAAB − eAAC ∧ ACB = 4 iψA ∧ γ5ψB . (5.7)
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Interpreting Ea as the vielbein, ωab as the spin connection, and ψa as the gravitino 1-form,

eqs. (5.7) can be viewed as the structural equations of a supermanifold AdS4|N×4 extending

anti de Sitter space with N Majorana supersymmetries. Indeed the gravitino 1-form is a

Majorana spinor since, by construction, it satisfies the reality condition

C ψ
T
A = ψA , ψA ≡ ψ†

A γ0 . (5.8)

The supermanifold AdS4|N×4 can be identified with the following supercoset:

M4|4N
osp ≡ Osp(N | 4)

SO(N ) × SO(1, 3)
(5.9)

Alternatively, the Maurer Cartan equations can be written in the following more compact

form:

d∆xy + ∆xz ∧ ∆ty ǫzt = − 4 i eΦx
A ∧ Φy

A,

dAAB − eAAC ∧ ACB = 4 iΦx
A ∧ Φy

B ǫxy

dΦx
A + ∆xy ∧ ǫyz Φz

A − eAAB ∧ Φx
B = 0 (5.10)

where all 1-forms are real and, according to the conventions discussed in appendix A, the

indices x, y, z, t are symplectic and take four values. The real symmetric bosonic 1-form

Ωxy = Ωyx encodes the generators of the Lie subalgebra sp(4, R), while the antisymmetric

real bosonic 1-form AAB = −ABA encodes the generators of the Lie subalgebra so(N ).

The fermionic 1-forms Φx
A are real and, as indicated by their indices, they transform in the

fundamental 4-dim representation of sp(4, R) and in the fundamental N -dim representation

of so(N ). Finally,

ǫxy = −ǫyx =




0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0


 (5.11)

is the symplectic invariant metric.

The relation between the formulation (5.7) and (5.10) of the same Maurer Cartan

equations is provided by the Majorana basis of d = 4 gamma matrices discussed in ap-

pendix B.2. Using eq. (B.8), the generators γab and γa γ5 of the anti de Sitter group SO(2, 3)

turn out to be all given by real symplectic matrices, as is explicitly shown in eq. (B.10) and

the matrix C γ5 turns out to be proportional to ǫxy as shown in eq. (B.9). On the other

hand a Majorana spinor in this basis is proportional to a real object times a phase factor

exp[−π i / 4].

Hence eqs. (5.7) and eqs. (5.10) are turned ones into the others upon the identifications:

Ωxy ǫyz ≡ Ωx
z ↔ −1

4 ωab γab − 2 e γa γ5 Ea

AAB ↔ AAB

ψx
A ↔ exp

[−πi
4

]
Φx

A

(5.12)

As is always the case, the Maurer Cartan equations are just a property of the (super)

Lie algebra and hold true independently of the (super) manifold on which the 1-forms are

realized: on the supergroup manifold or on different supercosets of the same supergroup.
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5.2 The relevant supercosets and their relation

We have already introduced the supercoset (5.9) which includes anti de Sitter space and

has 4 bosonic coordinates and 4 × N fermionic ones. Let us also consider the following

pure fermionic coset:

M0|4N
osp =

Osp(N | 4)
SO(N ) × Sp(4, R)

(5.13)

There is an obvious relation between these two supercosets that can be formulated in the

following way:

M4|4N
osp ∼ AdS4 × M0|4N

osp (5.14)

In order to explain the actual meaning of eq. (5.14) we proceed as follows. Let the graded

matrix L ∈ Osp(N|4) be the coset representative of the coset M4|4N
osp , such that the Maurer

Cartan form Λ of eq. (5.5) can be identified as:

Λ = L−1 dL (5.15)

Let us now factorize L as follows:

L = LF LB (5.16)

where LF is a coset representative for the coset:

Osp(N | 4)

SO(N ) × Sp(4, R)
∋ LF (5.17)

and LB is the Osp(N|4) embedding of a coset representative of AdS4, namely:

LB =

(
LB 0

0 1N

)
;

Sp(4, R)

SO(1, 3)
∋ LB (5.18)

In this way we find:

Λ = L−1
B ΛF LB + L−1

B d LB (5.19)

Let us now write the explicit form of ΛF in analogy to eq. (5.5):

ΛF =

(
∆F ΘA

4 i eΘA γ5 − e ÃAB

)
(5.20)

where ΘA is a Majorana-spinor valued fermionic 1-form and where ∆F is an sp(4, R) Lie

algebra valued 1-form presented as a 4× 4 matrix. Both ΘA as ∆F and ÃAB depend only

on the fermionic θ coordinates and differentials.

On the other hand we have:

L−1
B d LB =

(
∆B 0

0 0

)
(5.21)
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where the ΩB is also an sp(4, R) Lie algebra valued 1-form presented as a 4×4 matrix, but

it depends only on the bosonic coordinates xµ of the anti de Sitter space AdS4. Indeed,

according to eq. (5.5) we can write:

∆B = −1

4
Bab γab − 2 e γa γ5 Ba (5.22)

where
{
Bab , Ba

}
are respectively the spin-connection and the vielbein of AdS4, just as{

Bαβ , Bα
}

are the connection and vielbein of the internal coset manifold M7.

Inserting now these results into eq. (5.19) and comparing with eq. (5.5) we obtain:

ψA = L−1
B ΘA

AAB = ÃAB

−1

4
ωab γab − 2 e γa γ5 Ea = −1

4
Bab γab − 2 e γa γ5 Ba + L−1

B ∆F LB (5.23)

The above formulae encode an important information. They show how the supervielbein

and the superconnection of the supermanifold (5.9) can be constructed starting from the

vielbein and connection of AdS4 space plus the Maurer Cartan forms of the purely fermionic

supercoset (5.13). In other words formulae (5.23) provide the concrete interpretation of the

direct product (5.14). This will also be our starting point for the actual construction of the

supergauge completion in the case of maximal supersymmetry and for its generalization to

the cases of less supersymmetry.

5.3 Finite supergroup elements

We studied the osp(N|4) superalgebra but for our purposes we cannot confine ourselves to

the superalgebra, we need also to consider finite elements of the corresponding supergroup.

In particular the supercoset representative. Elements of the supergroup are described by

graded matrices of the form:

M =

(
A Θ

Π D

)
(5.24)

where A,D are submatrices made out of even elements of a Grassmann algebra while Θ,Π

are submatrices made out of odd elements of the same Grassmann algebra. It is important

to recall, that the operations of transposition and hermitian conjugation are defined as

follows on graded matrices:

MT =

(
AT ΠT

−ΘT DT

)

M † =

(
A† Π†

Θ† D†

)
(5.25)

This is done in order to preserve for the supertrace the same formal properties enjoyed by

the trace of ordinary matrices:

Str (M) = Tr (A) − Tr (D)

Str (M1 M2) = Str (M2 M1) (5.26)
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eqs. (5.25) and (5.26) have an important consequence. The consistency of the equation:

M † =
(
MT

)⋆
(5.27)

implies that the complex conjugate operation on a super matrix must be defined as follows:

M⋆ =

(
A⋆ −Θ⋆

Π⋆ D⋆

)
(5.28)

Let us now observe that in the Majorana basis which we have adopted we have:

Ĉ = i

(
ǫ 0

0 − 1
4e 1N×N

)
= i ǫ̂

Ĥ =

(
i ǫ 0

0 − 1
4e 1N×N

)
(5.29)

where the 4 × 4 matrix ǫ is given by eq. (B.9). Therefore in this basis an orthosymplectic

group element L ∈ OSp(N|4) which satisfies:

LT Ĉ L = Ĉ (5.30)

L† Ĥ L = Ĥ (5.31)

has the following structure:

L =

(
S exp

[
− iπ4

]
Θ

exp
[
− iπ4

]
Π O

)
(5.32)

where the bosonic sub-blocks S,O are respectively 4 × 4 and N × N and real, while the

fermionic ones Θ,Π are respectively 4 ×N and N × 4 and also real.

The orthosymplectic conditions (5.30) translate into the following conditions on the

sub-blocks:

ST ǫS = ǫ − i
1

4e
ΠT Π

OT O = 1 + i 4eΘT ǫΘ

ST ǫΘ = − 1

4e
ΠT O (5.33)

As we see, when the fermionic off-diagonal sub-blocks are zero the diagonal ones are re-

spectively a symplectic and an orthogonal matrix.

If the graded matrix L is regarded as the coset representative of either one of the two

supercosets (5.9), (5.13), we can evaluate the explicit structure of the left-invariant one

form Λ. Using the M0|4×N style of the Maurer Cartan equations (5.10) we obtain:

Λ ≡ L−1 dL =




∆ exp
[
−iπ4

]
Φ

−4e exp
[
−iπ4

]
ΦT ǫ − eA


 (5.34)
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where the 1-forms ∆, A and Φ can be explicitly calculated, using the explicit form of the

inverse coset representative:

L−1 =

(
−ǫST ǫ exp

[
−iπ4

]
1
4e ǫΠT

− exp
[
−iπ4

]
4eΘT ǫ OT

)
(5.35)

eA = −OT dO − i 4eΘT ǫ dΘ

Ω = − ǫST ǫ dS − i
1

4e
ΠT dΠ

Φ = − ǫ ST ǫ dΘ +
1

4e
ǫΠT dO (5.36)

5.4 The coset representative of OSp(N|4)/Sp(4) × SO(N )

It is fairly simple to write an explicit form for the coset representative of the fermionic

supermanifold

M0|4×N =
OSp(N|4)

Sp(4, R) × SO(N )
(5.37)

by adopting the upper left block components Θ of the supermatrix (5.32) as coordinates. It

suffices to solve eqs. (5.33) for the sub blocks S,O,Π. Such an explicit solution is provided

by setting:

O(Θ) =
(
1 + 4 i eΘT ǫΘ

)1/2

S(Θ) =
(
1 + 4 i eΘ ΘT ǫ

)1/2

Π = 4e
(
1 + 4 i eΘT ǫΘ

)−1/2
ΘT ǫ

(
1 + 4 i eΘ ΘT ǫ

)1/2

= 4e ΘT ǫ (5.38)

In this way we conclude that the coset representative of the fermionic supermanifold (5.37)

can be chosen to be the following supermatrix:

L (Θ) =

( (
1 + 4 i eΘ ΘT ǫ

)1/2
exp

[
− iπ4

]
Θ

− exp
[
− iπ4

]
4e ΘT ǫ

(
1 + 4 i eΘT ǫΘ

)1/2

)
(5.39)

By straightforward steps from eq. (5.35) we obtain the inverse of the supercoset ele-

ment (5.39) in the form:

L−1 (Θ) = L (−Θ) =

( (
1 + 4 i eΘ ΘT ǫ

)1/2 − exp
[
− iπ4

]
Θ

exp
[
− iπ4

]
4e ΘT ǫ

(
1 + 4 i eΘT ǫΘ

)1/2

)
(5.40)

Correspondingly we work out the explicit expression of the Maurer Cartan forms:

eA =
(
1 + 4 i eΘT ǫΘ

)1/2
d

(
1 + 4 i eΘT ǫΘ

)1/2 − i 4eΘT ǫ dΘ

Φ =
(
1 + 4 i eΘ ΘT ǫ

)1/2
dΘ + Θ d

(
1 + 4 i eΘT ǫΘ

)1/2

∆ =
(
1 + 4 i eΘ ΘT ǫ

)1/2
d

(
1 + 4 i eΘ ΘT ǫ

)1/2 − i 4eΘ dΘT ǫ (5.41)
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5.5 Gauged Maurer Cartan 1-forms of OSp(8|4)

A fundamental ingredient in the construction of gauged supergravities is constituted by the

gauging of Maurer Cartan forms of the scalar coset manifold G/H (see for instance [47] for

a survey of the subject). The vector fields present in the supermultiplet, which are 1-forms

defined over the space-time manifold M4 , are used to deform the Maurer Cartan 1-forms

of the scalar manifold G/H that are instead sections of T ⋆ (G/H). Mutatis mutandis, a

similar construction turns out to be quite essential in the problem of gauge completion

under consideration. In our case what will be gauged are the Maurer Cartan 1-forms

of the supercoset (5.13) which contains the fermionic coordinates of the final superspace

we desire to construct. The role of the space-time gauge fields is instead played by the

U-connection (4.5) of the so(8) spinor bundle constructed over the internal 7-manifold

(G/H)7.

Accordingly we define:

Λ̂ ≡ L−1 ∇L = L−1
(
d L +

[
Û , L

])
(5.42)

where Û is the supermatrix defined by the canonical immersion of the so(8) Lie algebra

into the orthosymplectic superalgebra:

Û =

(
0 0

0 U

)
= I (U)

I : so(8) 7→ osp(8|4) (5.43)

As a result of their definition, the gauged Maurer Cartan forms satisfy the following de-

formed Maurer Cartan equations:

∇Λ̂ + Λ̂ ∧ Λ̂ = L−1 (Θ)
[
F̂ [U] , L (Θ)

]
(5.44)

where

F̂ [U] =

(
0 0

0 F [U]

)
(5.45)

By explicit evaluation, from eq. (5.44) we obtain the following deformation of the Maurer

Cartan equations (5.10):

d∆̂xy + ∆̂xz ∧ ∆̂ty ǫzt + 4 i e Φ̂x
A ∧ Φ̂y

A, = − i Θx
A FAB [U] Θy

B

∇ÂAB − eÂAC ∧ ÂCB − 4 iΦ̂x
A ∧ Φ̂y

B ǫxy = OAP (Θ)FPQ[U]OQB(Θ) − FAB [U]

dΦ̂x
A + ∆̂xy ∧ ǫyz Φ̂z

A − e ÂAB ∧ Φ̂x
B = Θx

P FPQ[U]OQA(Θ) (5.46)

The above equations will be our main starting point in the discussion of the supergauge

completion for compactifications with less preserved supersymmetry.
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5.6 Constrained superspace and the supersolvable parametrization

In [11] it was demonstrated that, in full analogy with the solvable parametrization of non

compact bosonic coset manifolds, extensively utilized while dealing with the scalar sector of

supergravity models, one can introduce also a supersolvable parametrization of the super-

manifold M4|4×N
osp defined in eq. (5.9) (see [48, 11]). This latter is the supergroup manifold

of a solvable super Lie subalgebra SSolv4|N ⊂ Osp(N|4). Similarly to the bosonic case

the solvable parametrization of the supermanifold leads to an enormous simplification of

the Maurer Cartan forms since the coset representative becomes polynomial in its param-

eters, yet differently from the bosonic case the supersolvable algebra SSolv4|N has smaller

dimension than the dimension of the original coset M4|4×N
osp . In other words the supergroup

manifold:

SM4|2×N ≡ exp
[
SSolv4|N

]
(5.47)

does not contain all the Θ-coordinates but only a subset. Actually as it is implied by the

chosen notation, the solvable supergroup manifold SM4|2×N contains just one-half of the

thetas, namely 2×N . In [11] this was interpreted in terms of κ-supersymmetry. Indeed it

was advocated that starting from the general κ-supersymmetric action of the M2-brane,

one can localize it on an AdS4 × S7 background in a form where all κ-supersymmetry

are already gauged-fixed. This is the form taken by the general action when the Maurer

Cartan forms of Osp(N|4) are written in the supersolvable parametrization. Alternatively

one realizes that the solvable super Lie algebra SSolv4|N is nothing else but the N -extended

Poincaré superalgebra in three-space time dimensions, i.e. on the membrane world-volume,

while the complete Osp(N|4) algebra is simply the superconformal extension of such an

algebra. Hence the supermanifold (5.47) is just the ordinary Poincaré superspace for field

theories on the membrane and the used thetas are the superPoincaré ones while those

deleted are the parameters of conformal supersymmetry which can be non linear realized

on the Poincaré ones.

Explicitly the supersolvable parametrization works as follows. We look for a decom-

position of the Osp(N|4) algebra of the following form:

Osp(N|4) = (SO(1, 3) ⊗ SO(N ) ⊗Q) ⊕ SSolv4|N , (5.48)

where Q =
{
QA

−
}

is a subset of the fermionic generators defined by a suitable projection

operator P±

QA
− = P− · QA

QA
+ = P+ · QA, (5.49)

P2
± = P± ; P+ · P− = 0.

The main idea underlying the construction rules of the supersolvable algebra generat-

ing SM4|2×N as well as the solvable algebra generating anti de Sitter space is that of

grading. The Cartan generator contained in the coset of AdS4 defines a partition of the

isometry generators into eigenspaces corresponding to positive, negative or null eigenvalues
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(g(±1), sg(±1/2), sg(0)) and the structure of the solvable and supersolvable algebras (Solv

and SSolv) is the following:

g = SO(2, 3) ∼ Sp(4, R) → g(−1) ⊕ g(0) ⊕ g(+1),

Solv4 = {C} ⊕ g(−1),

sg = Osp(N|4) → g(−1) ⊕ sg(0) ⊕ g(+1) ⊕ sg(−1/2) ⊕ sg(1/2), (5.50)

sg(0) = g(0) ⊕ SO(N ),

SSolv4|N = {C} ⊕ g(−1) ⊕ sg(−1/2),

where sg(±1/2) represents the grading induced by the Cartan generator on the fermionic

isometries and the eigenspace sg(+1/2) not entering the construction of SSolv is the space

Q = {QA
+} in eq. (5.48) and generates the special conformal transformations. Moreover

these generators on the chosen solution of the world volume theory, generate the local

κ-supersymmetry transformations. As shown in [11] the projection operator which singles

out the subspaces sg(±1/2) is simply given in terms of 4D-gamma matrices as follows:

P± =
1

2
( ± γ5γ2),

sg(±1/2) = {QA
±} = {P±QA}. (5.51)

It is straightforward to verify that such a projection is compatible with the Majorana

condition and it is immediate to solve such a constraint in the basis of gamma matrices

described in appendix B.2. Indeed we find:

QA
± =




QA
1

QA
2

∓QA
2

±QA
1


 (5.52)

This implies that the corresponding Θ-coordinates have the same structure:

ΘA = ΘA
+ ⊕ ΘA

− ; ΘA
± =




ΘA±
1

ΘA±
2

∓ΘA±
2

±ΘA±
1


 (5.53)

Next it can be immediately verified that the projected Θ.s satisfy the following constraints:

Θx
A = Θx

A± (5.54)

⇓
Θx

A Θy
B ǫxy = 0 and Θx

A dΘy
B ǫxy = Θx

B dΘy
A ǫxy (5.55)

As explained in the introduction, in this paper we take a different point of view. Rather

then using the solvable parametrization we take the complete parametrization of the super-

cosets (either M4|4×N or M4|4×N ) but we enforce the constraints (5.55) on the fermionic

coordinates cutting out a sixteen dimensional locus in the 32-dimensional one. In this way

we preserve all the symmetries and yet we obtain a formidable simplification of the Maurer

Cartan forms which allows to pursue the gauge completion programme to its very end.
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5.7 Gauged Maurer Cartan forms in constrained superspace

Let us now consider the consequences of the constraints (5.55) on the coset representa-

tive (5.39), the Maurer Cartan forms (5.41) and their gauged counterparts (5.42). On the

constrained surface we immediately find:

O(Θ) = 1

S(Θ) = 1 + 2 i eΘ ΘT ǫ

Â = A = 0

∆̂ = 2 i
(
∇Θ ΘT − Θ∇ΘT

)
(5.56)

and the gauged Maurer Cartan equations (5.46) become:

d∆̂xy + ∆̂xz ∧ ∆̂ty ǫzt + 4 i e Φ̂x
A ∧ Φ̂y

A, = − i Θx
A FAB [U] Θy

B

0 = 0

dΦ̂x
A + ∆̂xy ∧ ǫyz Φ̂z

A = Θx
P FPA[U] (5.57)

As we are going to show in the sequel, the above equations enable us to write a complete

parametrization of all the FDA superforms adapted to any background AdS4 × (G/H)7.

6. Killing spinors of the AdS4 manifold

The next main item for the construction of the supergauge completion is given by the

Killing spinors of anti de Sitter space. Indeed, in analogy with the Killing spinors of the

internal 7-manifold, defined by eq. (3.30) with m = 1, we can now introduce the notion of

Killing spinors of the AdS4 space and recognize how they can be constructed in terms of

the coset representative, namely in terms of the fundamental harmonic of the coset.

The analogue of eq. (3.30) is given by:

∇Sp(4) χx ≡
(

d − 1

4
Bab γab − 2 e γa γ5 Ba

)
χx = 0 (6.1)

and states that the Killing spinor is a covariantly constant section of the sp(4, R) bundle de-

fined over AdS4. This bundle is flat since the vanishing of the sp(4, R) curvature is nothing

else but the Maurer Cartan equation of sp(4, R) and hence corresponds to the structural

equations of the AdS4 manifold. We are therefore guaranteed that there exists a basis

of four linearly independent sections of such a bundle, namely four linearly independent

solutions of eq. (6.1) which we can normalize as follows:

χx γ5 χy = i (C γ5)xy (6.2)

Let LB the coset representative mentioned in eq. (5.18) and satisfying:

− 1

4
Bab γab − 2 e γa γ5 Ba = ∆B = L−1

B dLB (6.3)
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It follows that the inverse matrix L−1
B satisfies the equation:

(d + ∆B) L−1
B = 0 (6.4)

Regarding the first index y of the matrix
(
L−1

B

)y
x as the spinor index acted on by the

connection ∆B and the second index x as the labeling enumerating the Killing spinors,

eq. (6.4) is identical with eq. (6.1) and hence we have explicitly constructed its four inde-

pendent solutions. In order to achieve the desired normalization (6.2) it suffices to multiply

by a phase factor exp
[
−i 1

4π
]
, namely it suffices to set:

χy
(x) = exp

[
−i

1

4
π

] (
L−1

B

)y
x (6.5)

In this way the four Killing spinors fulfill the Majorana condition. Furthermore since L−1
B

is symplectic it satisfies the defining relation

L−1
B C γ5 LB = C γ5 (6.6)

which implies (6.2).

7. Supergauge completion in mini superspace

As it was observed many years ago in [29, 44] and it is reviewed at length in the book [23],

given a bosonic Freund Rubin compactification of D=11 supergravity on an internal coset

manifold M7 = G
H which admits N Killing spinors it is fairly easy to extend it consistently

to a mini-superspace M11|4×N which contains all of the eleven bosonic coordinates but only

4 ×N θ.s, namely those which are associated with unbroken supersymmetries. We review

this extension reformulating it in such a way that it is suitable for its generalization to all

θ.s namely also to those associated with broken supersymmetries.

In the original formulation, the mini superspace is viewed as the following tensor

product

M11|4×N ≡ M4|4N
osp × G

H (7.1)

and in order to construct the FDA p-forms, in addition to the Maurer Cartan forms of the

above coset, we just need to introduce the Killing spinors of the bosonic internal manifold.

Let ηA be an orthonormal basis of N eight component Killing spinors satisfying the Killing

spinor condition (3.31) and the normalization:

(
ηA

)T
ηB = δAB (7.2)

Next, following [23] and [11], whose results were also summarized in [4], we can now write

the complete solution for the background fields in the case of AdS4 × G
H Freund-Rubin

– 28 –



J
H
E
P
0
1
(
2
0
0
8
)
0
3
6

backgrounds:

V̂ a =

{
V̂ a = Ea

V̂ α = Bα − 1
8 ηA τα ηB AAB

ω̂ab =





ω̂ab = ωab

ω̂αb = 0

ω̂αβ = Bαβ + e
4 ηA ταβ ηB AAB

Ψ̂ = ηA ⊗ ψA

(7.3)

where
{
Bαβ , Bα

}
are the spin connection and the vielbein, respectively, of the bosonic

seven dimensional coset manifold G
H .

Let us now observe that in this formulation of the superextension, the fermionic coor-

dinates are actually attached to the space-time manifold AdS4, which is superextended to

a supercoset manifold:

AdS4
superextension

=⇒ Osp(N | 4)

SO(N ) × SO(1, 3)
≡ M4|4×N (7.4)

At the same time the internal manifold M7 = G
H is regarded as purely bosonic and it is

twisted into the fabric of the Free Differential Algebra through the notion of the Killing

spinors ηA, defined as covariantly constant sections of the SO(8) spinor bundle over M7.

Yet whether supersymmetries are preserved or broken precisely depends on the struc-

ture of the SO(8) spinor bundle on M7. Henceforth it is suggestive to think that the

fermionic coordinates should not be attached to either the internal or to external manifold,

rather they should live as a fiber over the bosonic manifolds. The first step in order to real-

ize such a programme consists of a reformulation of the superextension in minisuperspace

that treats the space-time manifold AdS4 and the internal manifold M7 in a symmetric

way and in both instances relies on the notion of Killing spinors of the bosonic submanifold

as a way of including the fermionic one. This can be easily done in view of eq. (5.14) whose

precise meaning we have explained in section 5.2. Indeed in view of eq. (5.14) we can look

at at eq. (7.1) in the following equivalent, but more challenging fashion:

M11|4×N = AdS4 × M0|4×N × M7

≡ Sp(4, R)

SO(1, 3)︸ ︷︷ ︸
AdS4

× Osp(N | 4)

SO(N ) × Sp(4, R)︸ ︷︷ ︸
4×N fermionic manifold

× G
H︸︷︷︸
M7

(7.5)

The above equation simply corresponds to the rewriting of eq. (7.3) in the following way

V̂ a =

{
V̂ a = Ba − 1

8 e χx γa χy ∆xy
F

V̂ α = Bα − 1
8 ηA τα ηB AAB

ω̂ab =





ω̂ab = Bab + 1
2 χx γ5 γab χy ∆xy

F

ω̂αb = 0

ω̂αβ = Bαβ + e
4 ηA ταβ ηB AAB

Ψ̂ = ηA ⊗ χx Φx|A

(7.6)
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8. Gauge completion in the full constrained superspace

We are now in a position to write an ansatz which solves the rheonomic parametrization of

the FDA curvatures for any AdS4×(G/H)7 back ground and involves all the Θ-coordinates

although constrained. The extension to mini-superspace provided by eqs. (7.6) is our

starting point. In those equations the Maurer Cartan forms are those (ungauged) of the

supermanifold:
Osp(N|4)

Sp(4, R) × SO(N)
(8.1)

and therefore are written in terms of 4 × N unconstrained fermionic coordinates. The

summation on the indices A,B,C is on N -values since ηA are just the Killing spinors. The

MC-forms are ungauged because, by definition, there is no U-connection in the directions

spanned by the Killing spinors.

The new solution in complete constrained superspace has the following form:

V̂ a =

{
V̂ a = Ba − 1

8 e χx γa χy ∆̂xy
F

V̂ α = Bα − 1
8 ζA τα ζB ÂAB = Bα

ω̂ab =





ω̂ab = Bab + 1
2 χx γ5 γab χy ∆̂xy

F

ω̂αb = ∆ωαb

ω̂αβ = Bαβ + e
4 ζA ταβ ζB ÂAB = Bαβ + ∆ωαβ

Ψ̂ = ζA ⊗ χx Φ̂x|A

(8.2)

The modifications that have occurred with respect to eq. (7.6) are the following ones:

1. The indices A,B,C run on 8-values and rather then the Killing spinors ηA we have

a complete basis of sections ζA of the so(8) spin bundle.

2. The MC forms are those of the supermanifold

Osp(8|4)
Sp(4, R) × SO(8)

(8.3)

but they are not the ordinary ones, A,∆,Φ, rather those gauged by means of the

U-connection on the so(8)-spinor bundle over G/H. This is signaled by the hat:

Â, ∆̂, Φ̂.

3. The 32 coordinates of the supermanifold (8.3) are not free, rather they are subject

to the constraints (5.55). This implies in particular that Â vanishes.

4. The spin connection contains a correction term which is due to the gauging and which

we easily calculate below. In particular due to this correction the mixed components

ωαb are no longer zero.

It is fairly easy to verify by direct evaluation that the ansatz (8.2) verifies the torsion

equation (2.5) and the gravitino equation (2.8). The mixed part of the spin connection is

just a consequence of the F-deformation of the Maurer Cartan equation appearing in the
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first of eqs. (5.57). By explicit evaluation we find that without introducing the correction

∆ωab the torsion is not zero, rather it is given by:

T a =

{
T a = cost χx γaχy ζA τρσζB Θx

A Θy
B Cρσ

αβ Bα ∧ Bβ

Tα = 0
(8.4)

In view of the parametrization (8.2) this means that the torsion is of the form:

T a = Ha|bc Vb ∧ Vc

Ha|βγ = cost χx γaχy ζA τρσζB Θx
A Θy

B Cρσ
αβ

all other components ofHa|bc = 0 (8.5)

which can be reabsorbed by the following redefinition of the spin connection:

ωab 7→ ωab + ∆ωab

∆ωab = −
(
Ha|bc − Hb|ac − Hc|ab

)
V c (8.6)

8.1 The 3-form

We have found an explicit expression for the supervielbein V a , the gravitino 1-form Ψ and

ant he spin-connection ωab. In order to complete the description of the superextension we

need also to provide an expression for the 3-form A[3]. According to the general definitions

of the FDA curvatures eq. (2.3) and the rheonomic parametrization (2.6) we find that:

dA[3] = F[4] − 1

2
Ψ ∧ Γab Ψ ∧ V a ∧ V b (8.7)

⇓
dA[3] = e ǫabcd Ea ∧ Eb ∧ Ec ∧ Ed +

1

2
χx γab χy Φx

A ∧ Φy ∧ Ea ∧ Eb

+
1

2
χx χy ζA ταβ ζB Φx

A ∧ Φy
B ∧ Bα ∧ Bβ

+ χx γa γ5χy ζA τβ ζB Φx
A ∧ Φy

B ∧ Ea ∧ Bβ (8.8)

The expression of dA[3] as a 4-form is completely explicit in eq. (8.8) and by construction it

is integrable in the sense that d2A[3] = 0. One might desire to solve this equation by finding

a suitable expression for A[3] such that eq. (8.8) is satisfied. This is not possible in general

terms, namely by using only the invariant constraints (5.55). In order to find explicit

solutions, one needs to use some explicit coordinate system and some explicit solution of

the constraints. For instance using the solvable parametrization it was shown in paper

([11]) how to write A[3] in the case of the seven sphere. This analysis could be pursued

also for the other instances of compactifications with less supersymmetry, but it is not in

the spirit we have adopted. Here it is just the constraints what matters, not their explicit

solutions. In the main application we have in mind, namely while localizing the pure spinor

BRST invariant action of the supermembrane M2 on such backgrounds, we can easily avoid

all such problems. We simply substitute the world volume integral of A[3] with:
∫

WV3

A[3] 7→
∫

WV4

dA[3] (8.9)
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where the 4-dimensional integration volume WV4 is such that its boundary is the original

supermembrane world-volume:

tial WV4 = WV3 (8.10)

and we circumvent the problem of solving eq. (8.8).

With this observation we have concluded our proof that any AdS4 × G/H bosonic

solution of D=11 supergravity field equations can be explicit gauge completed to a solution

in a constrained superspace containing all the theta variables both associated with unbroken

as with with broken supersymmetries. Such a superspace extension is just suited for the

pure spinor action of the M2 brane as derived in [4].

9. Conclusions

The problem addressed in this paper is the supergauge completion of D=11 supergravity

backgrounds of the form AdS4 × (G/H). In short this corresponds to deriving an explicit

parametrization of the p-forms of D=11 supergravity FDA in terms of all 32 fermionic

coordinates plus the 11 bosonic coordinates of the chosen manifold AdS4 × (G/H). The

main motivation of solving such a problem is that the searched parametrization provides

the necessary information in order to convert the general pure spinor action of the M2

brane derived in [4] into an explicit form.

Our solution is based on three ingredients: 1) identification of the obstruction which

breaks supersymmetry in the non-trivial curvature of an SO(8) connection U over the

spinor bundle of the internal manifold G/H; 2) the replacement of Osp(8|4) Maurer-Cartan

forms with their gauged counterparts by means of the U -connection; 3) the implementation

of a quadratic constraint on the θ coordinates which in particular admits the solvable

parametrization of supercoset manifold previously discussed in [11].

It is rather straightforward that the same ingredients can be used for superstrings in

the less-supersymmetric backgounds of AdS-type. We leave this subject to a forthcoming

publication. Nevertheless, in the pure spinor formulation, one needs to BRST transform

the constraints (5.55) into constraints for the pure spinors. We notice that by solving (5.55)

we select a set of independent θ’s. Their BRST variation provides a set of unconstrained

commuting spinors on which we can still impose the pure spinor constraints. In this way

we maintain the balance of degrees of freedom needed to cancel the conformal central

charge. As a last remark, we point out that the target space supersymmetry is realized

in a non-linear way and therefore the theory will be manifestly supersymmetric. These

consideration will be presented more extensively in forthcoming publications.
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A. Index conventions

Due to the complexity of the Lie algebra and super Lie algebra structures which have to

be intertwined together into a single fabric in order to produce our solution of the FDA

equations, we are forced to introduce a plethora of different notations for different set of

indices and in the present appendix we summarize our index conventions for the reader’s

benefit.

We distinguish two sets of index conventions: those relative to the general theory

applying to a generic compactification on AdS4 × M7 and those relative to the specific

example M7 = N ′∞′

A.1 Index conventions for the general theory

We recall that all our indices are flat since we systematically use differential forms. Further-

more we have tried to incorporate consistently into our framework the index conventions

adopted in the series of papers ([29, 44, 23, 26, 32 – 34]), dating back to the eighties and

relative to the classification and construction of Freund Rubin compactifications and read-

opted in the series of papers ([40 – 43, 49]) relative to the reinterpretation of such solutions

into the context of the AdS/CFT correspondence.

1. The underlined lower latin indices from the beginning of the alphabet a, b, c, . . . =

0, 1, . . . , 10 run on eleven values and span the vector representation of the so(1, 10)

Lie algebra, namely the tangent Lie algebra of D = 11 supergravity.

2. The lower latin indices from the beginning of the alphabet a, b, c, . . . = 0, 1, . . . , 3

(without underlining) run on four values and span the vector representation of the

so(1, 3) Lie algebra, namely the tangent Lie algebra to the D = 4 space-time, specif-

ically AdS4.

3. The lower case greek indices from the beginning of the alphabet α, β, γ, . . . = 1, . . . , 7

run on seven values and span the vector representation of the so(7) Lie algebra namely

the tangent Lie algebra to the internal seven manifold M7.

4. The capital latin indices A,B,C, . . . = 1, . . . , 8 from the beginning of the alphabet

run on eight values and span the vector representation of so(8). They enumerate the

members of an orthonormal basis of sections {ζA} of the spinor bundle on M7.

5. Slightly modifying the general conventions of papers [29, 29, 44, 26, 32, 34], the

underlined capital latin indices from the beginning of the alphabet A,B,C, . . . run

on N values and are the vector indices of the subgroup SO(N ) ⊂ Osp(N|4). They

enumerate the members of an orthonormal basis of Killing spinors ηA.

6. Hence we have in general:

a =



 a︸︷︷︸

4 values

, α︸︷︷︸
7 values



 A =





A︸︷︷︸
N values

, B︸︷︷︸
8 -N values





(A.1)
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7. The lower case latin indices from the end of the alphabet x, y, z, t, . . . take four values

and are symplectic indices in the fundamental representation of sp(4, R). They enu-

merate the members χx of an orthonormal basis of Killing spinors on the manifold

AdS4.

B. Spinor identities

In this section we list some spinor identities which are very useful in deriving various results

discussed in the main text.

B.1 D=7 gamma matrix basis and spinor identities

We begin by writing the explicit form of the τ matrices used in the Kaluza-Klein super-

gravity literature [29] and in particular in the literature concerning the N010 manifold.2

The Clifford algebra:

{τα , τβ} = −δαβ (B.1)

is satisfied by the following, real, antisymmetric matrices:

τ1 =

0
BBBBBBBBBB@

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0

−1 0 0 0 0 0 0 0

1
CCCCCCCCCCA

; τ2 =

0
BBBBBBBBBB@

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 −1 0 0 0 0 0 0

1
CCCCCCCCCCA

τ3 =

0
BBBBBBBBBB@

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 −1 0 0 0 0 0

1
CCCCCCCCCCA

; τ4 =

0
BBBBBBBBBB@

0 0 0 0 0 0 −1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

1
CCCCCCCCCCA

τ5 =

0
BBBBBBBBBB@

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

1
CCCCCCCCCCA

; τ6 =

0
BBBBBBBBBB@

0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 −1 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0

1
CCCCCCCCCCA

τ7 =

0
BBBBBBBBBB@

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

1
CCCCCCCCCCA

(B.2)

2Note that there is a change of basis with respect to the tau matrices used in paper [4]
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Let ζA be an orthonormal basis of section for the spinor bundle on M7, namely:

ζA ζB = δAB (B.3)

Now let QAB = −QBA be any SO(8) Lie algebra valued 1-form and let us define the

following objects:

∆αβ ≡ ζAταβ ζB QAB

Θα ≡ ζAτα ζB QAB

Ξα ≡ ζAτα ζB QAC ∧ QCD

Παβ ≡ ζAταβ ζB QAC ∧ QCD (B.4)

Then using the negative metric to saturate the so(7) vector indices, as it is appropriate in

our conventions, we find the following identities:
(
− 1

16
∆αβ ταβ +

1

8
Θα τα

)
ζA = QAB ζB

∆αβ ∧ Θβ = 4Ξα

−∆αβ ∧ ∆βγ = −4Παβ + Θα ∧ Θβ (B.5)

Next we consider the spinor identities in 4-dimensions.

B.2 D=4 γ-matrix basis and spinor identities

In this section we construct a basis of so(1, 3) gamma matrices such that it explicitly

realizes the isomorphism so(2, 3) ∼ sp(4, R) with the conventions used in the main text.

Naming σi the standard Pauli matrices:

σ1 =

(
0 1

1 0

)
; σ2 =

(
0 −i

i 0

)
; σ3 =

(
1 0

0 −1

)
(B.6)

we realize the so(1, 3) Clifford algebra:

{γa , γb} = 2 ηab ; ηab = diag (+,−,−,−) (B.7)

by setting:
γ0 = σ2 ⊗ 1 ; γ1 = iσ3 ⊗ σ1

γ2 = iσ1 ⊗ 1 ; γ3 = iσ3 ⊗ σ3

γ5 = σ3 ⊗ σ2 ; C = iσ2 ⊗ 1

(B.8)

where γ5 is the chirality matrix and C is the charge conjugation matrix. Making now

reference to eqs. (5.2) and (5.3) of the main text we see that the antisymmetric matrix

entering the definition of the orthosymplectic algebra, namely C γ5 is the following one:

C γ5 = i




0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0


 (B.9)
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namely it is proportional, through an overall i-factor, to a real completely off-diagonal

matrix. On the other hand all the generators of the so(2, 3) Lie algebra, i.e. γab and γa γ5

are real, symplectic 4 × 4 matrices. Indeed we have

γ01 =




0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0


 ; γ02 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




γ12 =




0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0


 ; γ13 =




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0




γ23 =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 ; γ34 =




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0




γ0 γ5 =




0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0


 ; γ1 γ5 =




−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1




γ2 γ5 =




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


 ; γ3 γ5 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




(B.10)

On the other hand we find that Cγ0 = i1. Hence the Majorana condition becomes:

iψ = ψ⋆ (B.11)

so that a Majorana spinor is just a real spinor multiplied by an overall phase exp
[
−iπ

4

]
.

These conventions being fixed let χx (x = 1, . . . , 4) be a set of (commuting) Majorana

spinors normalized in the following way:

χx = C χT
x ; Majorana condition

χx γ5 χy = i (C γ5)xy ; symplectic normal basis
(B.12)

Then by explicit evaluation we can verify the following Fierz identity:

1

2
γab χz χx γ5 γab χy − γa γ5 χz χx γa χy = − 2i

[
(Cγ5)zx χy + (Cγ5)zy χx

]
(B.13)

Another identity which we can prove by direct evaluation is the following one:

χx γ5γab χy χz γb χt − χz γ5γab χt χx γb χy = (B.14)

i
(
χx γa χt (C γ5)yz + χy γa χt (C γ5)xz + χx γa χz (C γ5)yt + χy γa χz (C γ5)xt

)

Both these identities are of high relevance in our discussion of the supergauge completion.
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C. The explicit form of the U-connection in a pair of examples

Since the central item in deriving the gauge superextension is provided by the U-connection

on the so(8) spinor bundle, it is appropriate to spell out the explicit form of a such a 1-form

at least in a couple of cases. To this effect we shall consider the spaces Q111 and N010.

C.1 The Q111 sasakian manifold

The 7 manifold Q111 is an S1 fibration over the product of three P1:

Q111 π
=⇒ P1 × P1 × P1 (C.1)

the fibration being:

Q111 ∼ O
(
P1, 1

)
⊗ O

(
P1, 1

)
⊗ O

(
P1, 1

)
(C.2)

This means that, as a coset manifold, it can be described as the particular instance

(p, q, r) = (1, 1, 1) in the infinite family of homogeneous spaces:

Qpqr =
SU(2)1 × SU(2)2 × SU(2)3 × U(1)

U(1) × U(1) × U(1)
(C.3)

Z = p J3
(1) + q J3

(2) + r J3
(2) + Y (C.4)

by definition Z being the Cartan generator that is not in the subalgebra H = U(1)×U(1)×
U(1), Ja

(i) (a = 1, 2, 3) being the generators of SU(2)i and the hypercharge Y being the

generator of U(1) in the numerator group G.

These 7-manifolds were originally introduced in [50] and their role as solutions of D =

11 supergravity was there discussed. In particular their holonomy and Killing spinors were

calculated explicitly in [50], showing that for (p, q, r) = (1, 1, 1) there is so(8)-holonomy

equal to su(3) and two Killing spinors, while in all the other cases all supersymmetries

are broken. In the context of the AdS/CFT correspondence, the algebraic structure of the

sasakian manifolds was shown to determine the form of the dual gauge theories in [42] and

in that paper the gauge dual of Q111 was also derived. Finally the complete Kaluza-Klein

spectrum of M-theory on AdS4×Q111 and its organization in Osp(2|4) × SU(2)3 multiplets

was derived in [51]. We review here the essential steps in the geometrical construction of

Q111 in order to calculate the explicit form of the so(8) connection

We begin by writing the Maurer Cartan equations of the Lie algebra G = su(2) ⊕
su(2)⊕su(2)⊕u(1), by enumerating its generators from one to ten, the first triplet e1, e2, e3

being the generators of the first su(2), the second triplet e4, e5, e6 the generators of the

second su(2) and so on. The last generator e10 is associated with the abelian u(1) algebra.

Correspondingly we have:

0 = de1+3i + e2+3i ∧ e3+3i

0 = de2+3i − e1+3i ∧ e3+3i

0 = de3+3i + e1+3i ∧ e2+3i





i = 0, 1, 2

0 = de10 (C.5)
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Next we perform a change of basis in the above 10-dimensional algebra introducing the

following new set of 1-forms:

Σ1 =
1

4
√

2 e
e1; Σ2 =

1

4
√

2 e
e2

Σ3 =
1

4
√

2 e
e4; Σ4 =

1

4
√

2 e
e5

Σ5 =
1

4
√

2 e
e7; Σ6 =

1

4
√

2 e
e8

Σ7 =
1

8 e
(e3 + e6 + e9 + e10)

Σ8 =
1

2
(e3 − e6 − e9 + e10)

Σ9 =
1

2
(− e3 + e6 − e9 + e10)

Σ10 =
1

2
(− e3 − e6 + e9 + e10) (C.6)

The meaning of the above rearrangement is the following. Apart from the rescaling by the

factor 1
4
√

2 e
the first six generators are, two by two, the vielbeins of the three copies of the

2-dimensional projective space P1 ∼ SU(2)/U(1). The last four generators correspond to

an orthogonal basis in the space spanned by the four Cartan generators, such that the first

element in the basis is dual to the generator Z of eq. (C.4) with p = q = r = 1. In this

way Σ7 can be identified as the 7th-vielbein of Q111. The remaining three 1-forms Σ8,9,10

provide a basis for the H-subalgebra H = u(1)⊕u(1)⊕u(1). The rescalings of the vielbeins

have being chosen in such a way as to produce a diagonal Ricci tensor with 7-eigenvalues

all equal to 12e2 as it is required in order for the manifold to be a solution of D = 11

supergravity. Here as above e denotes the Freund Rubin parameter.

Writing the Maurer Cartan equations (C.5) in the new basis the Maurer Cartan equa-

tions (C.5) we can use them to calculate the spin connection Bαβ of the 7-manifold by

setting:

Bα = {Σ1 , . . . Σ7} (C.7)

and implementing the vanishing of the torsion:

dBα + Bαβ ∧ Bβ = 0 (C.8)

This leads to the calculation of the Riemann tensor and of the Ricci tensor:

Rα
β = 12e2 δα

β (C.9)

as required.

The connection on the so(8)-bundle can now be easily calculated. From its definition:

U = − 1

4
Bαβ ταβ − eBα τα (C.10)

we can obtain its explicit form, provided we use an explicit representation of the τ -matrices,

satisfying the Clifford algebra (B.1). In appendix B.1 we displayed an explicit realization
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of the τ matrices which is well adapted to the discussion of the N010 manifold and is

particularly simple. Certainly we could use such a basis also for the Q111-manifold, yet,

in this case it is convenient to use another basis τ ′
α , related to the τα of eqs. (B.2) by an

orthogonal SO(8) transformation:

τ ′
α = O τα OT (C.11)

where:

O =




0 −1
2 0 1

2 0 −1
2 0 1

2
1
2 0 −1

2 0 1
2 0 1

2 0
1
2 0 1

2 0 1
2 0 −1

2 0

0 1
2 0 1

2 0 1
2 0 1

2
1
2 0 1

2 0 −1
2 0 1

2 0
1

2
√

2
1

2
√

2
−1

2
√

2
1

2
√

2
−1

2
√

2
−1

2
√

2
−1

2
√

2
−1

2
√

2

0 1
2 0 −1

2 0 −1
2 0 1

2
1

2
√

2
−1

2
√

2
−1

2
√

2
−1

2
√

2
−1

2
√

2
1

2
√

2
−1

2
√

2
1

2
√

2




(C.12)

If the τα used in eq. (C.10) are the τ ′
α, defined in eq. (C.12), we get a block-diagonal

structure for the U-matrix:

U =

(
U2 0

0 U6

)
(C.13)

where:

so(2) ∋ U2 =

(
0 eΣ7 + Σ8

4 + Σ9

4 + Σ10

4

−eΣ7 − Σ8

4 − Σ9

4 − Σ10

4 0

)

=
1

2

(
0 e10

−e10 0

)
(C.14)

and

so(6) ∋ U6 =




0 −e4

2
√

2
e5

2
√

2
e7−e8

4
−e3+e6+e9

2
−e7−e8

4
e4

2
√

2
0 e3+e6−e9

2
e1+e2

4
−e5

2
√

2
e1−e2

4
−e5

2
√

2
−e3−e6+e9

2 0 e1−e2

4
−e4

2
√

2
−e1−e2

4
−e7+e8

4
−e1−e2

4
−e1+e2

4 0 e7+e8

4
e3−e6+e9

2
e3−e6−e9

2
e5

2
√

2
e4

2
√

2
−e7−e8

4 0 −e7+e8

4
e7+e8

4
−e1+e2

4
e1+e2

4
−e3+e6−e9

2
e7−e8

4 0




(C.15)

C.2 The N010 tri-sasakian manifold

The space N010 can be simply defined as the coset space

S
R =

SU(3)

U(1)
, (C.16)

where, using the Gell-Mann matrices λA as su(3) generators, the quotient is taken with

respect to the U(1) subgroup generated by λ8. The space N010, an instance in the series of 7-

dimensional coset spaces named Np,q,r in the classification of [34], is the only 7-dimensional
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coset that, when used as a compactification manifold for 11D supergravity, can preserve

N = 3 supersymmetry [54]. The complete KK spectrum of the N010 compactification was

derived in [49], and its Osp(3|4) multiplet structure elucidated in [41, 55].

The isotropy group of N010 is SU(3)× SU(2); the SU(2) factor is the normalizer of the

U(1) action and, explicitly, it is generated by λ1,2,3.

In this case the underlined capital latin indices from the beginning of the alphabet run

on eight values and span the adjoint representation of the su(3) Lie algebra.

Let

ΣA = (Σα,Σ8) (C.17)

be the Maurer-Cartan forms for su(3), namely let

Σ =
i

2
ΣAλA = g−1dg ; g ∈ SU(3) (C.18)

so that the Maurer Cartan equations

dΣ + Σ ∧ Σ = 0 (C.19)

rewritten in the Gell-Mann basis:

dΣA +
1

2
fA

BC
ΣB ∧ ΣC = 0 (C.20)

define the structure constants fA
BC

of the su(3) Lie algebra. The vielbein corresponding

to a generic SU(3) × SU(2)-invariant metric are obtained from the coset vielbein Σα (α =

1, . . . 7) by rescaling independently the two groups associated to λα̇ (α̇ = 1, 2, 3) and λeα

(α̃ = 4, 5, 6, 7). Indeed such a decomposition is respected both by the U(1) quotient and

by the SU(2) action. Thus we have:3

Bα = (α−1Σα̇, β−1Σeα) . (C.21)

The spin connection Bαβ and the curvature associated to these vielbein are straightfor-

wardly computed (see [56]).

The “standard” N010 metric is obtained with the following rescalings:

α = −4 e , β = ±4
√

2 e . (C.22)

It preserves N = 3 supersymmetry. It is known [54] that, when N010 is realized as the

coset (C.16), its Killing spinors must actually be constant. With the rescalings (C.22),

there are 3 independent constant spinors ηA (A = 1, 2, 3) that satisfy eq. (3.31), namely

− 1

4
Bαβ

γταβ ηA = e τγ ηA . (C.23)

They transform as a triplet under the SU(2) part of the isometry, which therefore truly ac-

quires the role of the R-symmetry group SU(2)R for the 4-dimensional gauged supergravity

that arises from the compactification.

3Due to a different choice of structure constant, our rescaling α is minus twice the one used in [56].
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There is a possible solution that differs from (C.22) only by the sign of the rescaling

α. While the sign of β is irrelevant, because β appears quadratically also in the spin

connection, reversing the sign of α amounts to reversing the sign of the spin connection

(or, equivalently, to changing the orientation of the manifold). This solution with opposite

orientation preserves no supersymmetry.

In the case with preserved N = 3 supersymmetry let us calculate the so(8) connection

as defined by eq. (4.5):

USO(8) ≡ −1

4
Bαβταβ − e τγ Bγ (C.24)

We find its explicit expression as an 8 × 8 matrix:

USO(8) =


0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 4B5 −4B4 −4B7 4B6 0

0 0 −4B5 0
−(

√
3Σ8)
2 + 2B3 −2B2 −2B1 0

0 0 4B4
√

3Σ8

2 − 2B3 0 2B1 −2B2 0

0 0 4B7 2B2 −2B1 0
−(

√
3Σ8)
2 − 2B3 0

0 0 −4B6 2B1 2B2
√

3Σ8

2 + 2B3 0 0

0 0 0 0 0 0 0 0




(C.25)

where Bα is the vielbein defined with the appropriate rescalings already included and Σ8

is the H-connection, namely the component along λ8 of the left-invariant 1-form Σ on the

coset.

It is visually evident from eq. (C.25) that the three Killing spinors are

η1 = (1 0 0 0 0 0 0 0 0)

η2 = (0 1 0 0 0 0 0 0 0)

η3 = (0 0 0 0 0 0 0 0 1)

(C.26)

Since the non trivial part of the operator USO(8) is only the block in the five directions

2, 3, 4, 5, 6.

Hence, in this case, we have a natural way of introducing an orthogonal basis of sections

of the so(8) spinor bundle. We use ηA as three basis vectors, while the other five can be

chosen to be

ξi = −→ǫ i+1 ; i = 1, . . . , 5 (C.27)

where −→ǫ i are the standard orthonormal euclidean vectors in eight dimensions.

With this choice the 1-form connection UAB is just 8 × 8 matrix Uso(8) as given in

eq. (C.25).
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